197 research outputs found

    Desarrollo y optimización de nuevos materiales poliméricos, mezclas y compuestos de alto rendimiento medioambiental a partir de poliésteres y poliamidas procedentes de recursos renovables de interés en el sector envase y embalaje

    Full text link
    Tesis por compendio[ES] El principal objetivo de la presente tesis doctoral se ha centrado en la obtención, desarrollo y caracterización de nuevas formulaciones de alto rendimiento medioambiental a partir de la utilización de poliésteres y poliamidas de origen renovable para el sector del envase y embalaje. A lo largo de todo el proceso de investigación, se han abordado y evaluado diferentes frentes de mejora con el objetivo de mejorar al máximo las propiedades de estos materiales desde un punto de vista altamente eficiente para el medio ambiente. Para este cometido, se han analizado desde diferentes tipos de mezclas binarias y ternarias, hasta la incorporación de cargas y refuerzos naturales, incorporación de aditivos y utilización de plastificantes capaces de solventar problemas de fragilidad y adhesión ligados a ciertos poliésteres como el PLA. En la primera fase de la tesis se han analizado y estudiado la miscibilidad y propiedades mecánicas, térmicas y morfológicas de mezclas ternarias y binarias basadas en poliéster como el PHBH o el PLA como elementos principales. Se ha utilizado la extrusión reactiva (REX) consiguiendo resultados muy positivos con la incorporación de materiales como el PCL, TPS y PBAT a los poliésteres anteriormente comentados. Se ha mejorado la miscibilidad entre los distintos componentes, a partir de elementos como el ESAO o agentes compatibilizadores como PE-g-MA, PE-co-GMA y DCP, y sobretodo, MLO como compatibilizante natural, para desarrollar plásticos totalmente renovables con ductilidad y tenacidad mejoradas para su aplicación en el sector envase y embalaje. Dentro de las mezclas binarias, la combinación del PLA con un polietileno de origen renovable ha resultado ser una solución prometedora dentro del sector del envase y embalaje. Por otro lado, para mejorar los problemas de tenacidad y el coste del PLA, se han evaluado y analizado la incorporación de aditivos y cargas naturales. La utilización de aceites naturales derivados de la soja, linaza y cáñamo han mejorado en gran medida la ductilidad del PLA. Además, estos aceites se han combinado con cargas derivadas de la cáscara de almendra y la piel de naranja en proporciones de hasta un 30%, consiguiendo un buen equilibrio de propiedades mecánicas y obteniendo WPCs capaces de ser altamente eficientes y rentables en algunas aplicaciones de envasado. En la búsqueda de polímeros respetuosos por el medio ambiente, se han evaluado las propiedades de diferentes poliamidas de base biológica, y se ha seleccionado la PA1010 como candidata perfecta, gracias a sus excelentes propiedades y a su origen 100% renovable. En este contexto, se ha estudiado la viabilidad de incorporar fibras naturales como refuerzo, con unos resultados muy prometedores para las fibras de pizarra, consiguiendo mejoras de resistencia máxima de más del doble con elementos totalmente naturales. Hay que resaltar que la combinación de la PA1010 y el PLA con diferentes agentes naturales como el ELO y el MLO para la fabricación de films, han dado como resultado una notable mejora en las propiedades mecánicas, y sobre todo, una mejora en el efecto barrera al oxígeno. En la última fase de la tesis, se ha optimizado la extracción de elementos antioxidantes como el ácido gálico a partir de residuos agroalimentarios. La incorporación de este elemento en el PLA ha dado como resultado la fabricación de films para envases activos, favoreciendo en gran medida su aplicación en el sector del envasado de alimentos. Además, se ha corroborado el efecto que posee este tipo de antioxidante natural en la preservación de films de bio-HDPE frente a agentes externos como la temperatura y la radiación UV. Por último, se ha conseguido mejorar en gran medida la ventana de procesamiento y las propiedades mecánicas y térmicas de las mezclas de biopolímeros de PA1010 y bio-HDPE.[EN] The main objective of this doctoral thesis has been focused on obtaining, developing and characterizing new formulations with high environmental performance from the use of polyesters and polyamides of renewable origin for the packaging sector. Throughout the research process, different improvement fronts have been addressed and evaluated with the aim of improving the properties of these materials to the maximum from a highly efficient point of view for the environment. For this purpose, different types of binary and ternary mixtures have been analysed, as well as the incorporation of natural fillers and reinforcements, the incorporation of additives and the use of plasticisers capable of solving problems of fragility and adhesion linked to certain polyesters such as PLA. In the first phase of the thesis, the miscibility and mechanical, thermal and morphological properties of ternary and binary mixtures based on polyester such as PHBH or PLA as main elements have been analysed and studied. Reactive extrusion (REX) has been used, obtaining very positive results with the incorporation of materials such as PCL, TPS and PBAT to the previously mentioned polyesters. Miscibility between the different components has been improved, using elements such as ESAO or compatibilizing agents such as PE-g-MA, PE-co-GMA and DCP, and above all, MLO as a natural compatibilizer, to develop totally renewable plastics with improved ductility and tenacity for application in the packaging sector. Within binary mixtures, the combination of PLA with a polyethylene of renewable origin has proved to be a promising solution within the packaging sector. On the other hand, to improve the toughness problems and the cost of PLA, the incorporation of additives and natural fillers has been evaluated and analysed. The use of natural oils derived from soya, flax and hemp has greatly improved the ductility of PLA. In addition, these oils have been combined with fillers derived from almond shells and orange peel in proportions of up to 30%, achieving a good balance of mechanical properties and obtaining WPCs capable of being highly efficient and cost-effective in some packaging applications. In the search for environmentally friendly polymers, the properties of different bio-based polyamides have been evaluated, and PA1010 has been selected as a perfect candidate thanks to its excellent properties and 100% renewable origin. In this context, the viability of incorporating natural fibres as reinforcement has been studied, with very promising results for slate fibres, achieving maximum resistance improvements of more than double with totally natural elements. It should be noted that the combination of PA1010 and PLA with different natural agents such as ELO and MLO for the manufacture of films, have resulted in a significant improvement in mechanical properties, and above all, an improvement in the oxygen barrier effect. In the last phase of the thesis, the extraction of antioxidant elements such as gallic acid from food waste has been optimized. The incorporation of this element in PLA has resulted in the manufacture of films for active packaging, greatly favoring its application in the food packaging sector. In addition, the effect of this type of natural antioxidant on the preservation of bio-HDPE films against external agents such as temperature and UV radiation has been corroborated. Finally, the processing window and the mechanical and thermal properties of PA1010 and bio-HDPE biopolymer blends have been greatly improved.[CA] El principal objectiu de la present tesi doctoral s'ha centrat en l'obtenció, desenvolupament i caracterització de noves formulacions d'alt rendiment mediambiental a partir de la utilització de polièsters i poliamides d'origen renovable per al sector de l'envàs i embalatge. Al llarg de tot el procés d'investigació, s'han abordat i avaluat diferents fronts de millora amb l'objectiu de millorar al màxim les propietats d'aquests materials des d'un punt de vista altament eficient per al medi ambient. Amb aquest objectiu, s'han analitzat des de diferents tipus de mescles binàries i ternàries, fins a la incorporació de càrregues i reforços naturals, incorporació d'additius i utilització de plastificants capaços de solventar problemes de fragilitat i adhesió lligats a certs polièsters com el PLA. En la primera fase de la tesi s'han analitzat i estudiat la miscibilitat i propietats mecàniques, tèrmiques i morfològiques de mescles ternàries i binàries basades en polièster com el PHBH o el PLA com a elements principals. S'ha utilitzat l'extrusió reactiva (REX) aconseguint resultats molt positius amb la incorporació de materials com el PCL, TPS i PBAT als polièsters anteriorment comentats. Per a la millora de la miscibilitat entre els diferents components, s'han utilitzat elements com el ESAO o agents compatibilitzants com a PE-g-MA., PE-co-GMA i DCP, i sobretot, MLO com compatibilitzant natural, per a desenvolupar plàstics totalment compostables amb ductilitat i tenacitat millorades per a la seua aplicació en el sector envase i embalatge. Dins de les mescles binàries, la combinació del PLA amb un polietilé d'origen renovable ha resultat ser una solució prometedora dins del sector de l'envàs i l'embalatge. D'altra banda, per a millorar els problemes de tenacitat i el cost del PLA, s'han avaluat i analitzat la incorporació d'additius i càrregues naturals. La utilització d'olis naturals derivats de la soja, llinosa i cànem han millorat en gran manera la ductilitat del PLA. A més, aquests olis s'han combinat amb càrregues derivades de la corfa d'ametla i la pell de taronja en proporcions de fins a un 30%, aconseguint un bon equilibri de propietats mecàniques i obtenint WPCs capaços de ser altament eficients i rendibles en algunes aplicacions d'envasament. Dins de la cerca de polímers respectuosos pel medi ambient, s'han avaluat les propietats de diferents poliamides de base biològica, i s'ha seleccionat la PA1010 com a candidata perfecta gràcies a les seues excel¿lents propietats i al seu origen 100% renovable. En aquest context, s'ha estudiat la viabilitat d'incorporar fibres naturals com a reforç, amb uns resultats molt prometedors per a les fibres de pissarra, aconseguint uns resultats de resistència màxima de més del doble amb elements totalment naturals. Hi ha que ressaltar que la combinació de la PA1010 amb el PLA amb diferents agents naturals com el ELO i el MLO per a la fabricació de films atorga una millora notable per a la fabricació de films, gràcies a la seua notable millora en les propietats mecàniques i dúctils, i sobretot, la millora en l'efecte barrera a l'oxigen. En l'última fase de la tesi, s'ha optimitzat l'extracció d'elements antioxidants com l'àcid gàl¿lic a partir de residus agroalimentaris. La incorporació d'aquest element en el PLA ha donat com a resultat la fabricació de films i envasos actius, afavorint en gran manera la seua aplicació en el sector de l'envasament d'aliments. A més, s'ha avaluat l'efecte que posseeix aquest tipus d'antioxidant natural en la preservació de films de bio-HDPE enfront d'agents externs com la temperatura i la radiació UV. Finalment, s'ha aconseguit millorar en gran manera la finestra de processament i les propietats mecàniques i tèrmiques de les mescles de biopolímers com PA1010 i bio-HDPE.Al ministerio de Educación Cultura y Deporte por el apoyo financiero a través de la ayuda otorgada (FPU15/03812). A la Conselleria d'Educació, Cultura i Esport de la Generalitat Valenciana por el apoyo financiero a través de la ayuda otorgada (ACIF/2016/182). Al ministerio de Ciencia, Innovación y Universidades (MICIU) por el soporte financiero de este trabajo con el proyecto MAT2017-84909-C2-2-R.Quiles Carrillo, LJ. (2020). Desarrollo y optimización de nuevos materiales poliméricos, mezclas y compuestos de alto rendimiento medioambiental a partir de poliésteres y poliamidas procedentes de recursos renovables de interés en el sector envase y embalaje [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147479TESISCompendi

    On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films

    Get PDF
    This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications

    A comparison between the analytical solution of a single cantilever beam fixed at one end and the use of the finite elements method (FEM) with SolidWorks

    Full text link
    Este objeto de aprendizaje se enmarca en el contexto de la formación de los graduados en ingeniería y se centra en el estudio comparativo de la resolución de un problema simple de cálculo de una viga mediante el método analítico y el empleo de herramientas basadas en el método de los elementos finitos. Este artículo docente tiene por objeto comparar las diferencias entre ambos métodos y el potencial que ofrecen las herramientas basadas en el Método de los Elementos Finitos (FEA) como herramienta de ayuda en el proceso de desarrollo de partes y ensamblajes en ingeniería.Balart Gimeno, RA.; Quiles Carrillo, LJ.; Montañés Muñoz, N. (2018). A comparison between the analytical solution of a single cantilever beam fixed at one end and the use of the finite elements method (FEM) with SolidWorks. http://hdl.handle.net/10251/103904DE

    The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO)

    Full text link
    [EN] In this work poly(butylene succinate) (PBS) composites with varying loads of almond shell flour (ASF) in the 10-50 wt % were manufactured by extrusion and subsequent injection molding thus showing the feasibility of these combined manufacturing processes for composites up to 50 wt % ASF. A vegetable oil-derived compatibilizer, maleinized linseed oil (MLO), was used in PBS/ASF composites with a constant ASF to MLO (wt/wt) ratio of 10.0:1.5. Mechanical properties of PBS/ASF/MLO composites were obtained by standard tensile, hardness, and impact tests. The morphology of these composites was studied by field emission scanning electron microscopy-FESEM) and the main thermal properties were obtained by differential scanning calorimetry (DSC), dynamical mechanical-thermal analysis (DMTA), thermomechanical analysis (TMA), and thermogravimetry (TGA). As the ASF loading increased, a decrease in maximum tensile strength could be detected due to the presence of ASF filler and a plasticization effect provided by MLO which also provided a compatibilization effect due to the interaction of succinic anhydride polar groups contained in MLO with hydroxyl groups in both PBS (hydroxyl terminal groups) and ASF (hydroxyl groups in cellulose). FESEM study reveals a positive contribution of MLO to embed ASF particles into the PBS matrix, thus leading to balanced mechanical properties. Varying ASF loading on PBS composites represents an environmentally-friendly solution to broaden PBS uses at the industrial level while the use of MLO contributes to overcome or minimize the lack of interaction between the hydrophobic PBS matrix and the highly hydrophilic ASF filler.This research was supported by the Ministry of Economy, Industry and Competitiveness (MINECO) program number MAT2017-84909-C2-2-R.Liminana, P.; Quiles-Carrillo, L.; Boronat, T.; Balart, R.; Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials. 11(11):1-17. https://doi.org/10.3390/ma11112179S1171111Hottle, T. A., Bilec, M. M., & Landis, A. E. (2017). Biopolymer production and end of life comparisons using life cycle assessment. Resources, Conservation and Recycling, 122, 295-306. doi:10.1016/j.resconrec.2017.03.002Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002Eichhorn, S. J., & Gandini, A. (2010). Materials from Renewable Resources. MRS Bulletin, 35(3), 187-193. doi:10.1557/mrs2010.650Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567Kondratowicz, F. Ł., & Ukielski, R. (2009). Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers. Polymer Degradation and Stability, 94(3), 375-382. doi:10.1016/j.polymdegradstab.2008.12.001Mochizuki, M., & Hirami, M. (1997). Structural Effects on the Biodegradation of Aliphatic Polyesters. Polymers for Advanced Technologies, 8(4), 203-209. doi:10.1002/(sici)1099-1581(199704)8:43.0.co;2-3Debuissy, T., Pollet, E., & Avérous, L. (2016). Synthesis of potentially biobased copolyesters based on adipic acid and butanediols: Kinetic study between 1,4- and 2,3-butanediol and their influence on crystallization and thermal properties. Polymer, 99, 204-213. doi:10.1016/j.polymer.2016.07.022Patel, M. K., Bechu, A., Villegas, J. D., Bergez-Lacoste, M., Yeung, K., Murphy, R., … Bryant, D. (2018). Second-generation bio-based plastics are becoming a reality - Non-renewable energy and greenhouse gas (GHG) balance of succinic acid-based plastic end products made from lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 12(3), 426-441. doi:10.1002/bbb.1849Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T., & Tian, D. (2018). Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, 319-326. doi:10.1016/j.polymertesting.2018.02.003Puchalski, M., Szparaga, G., Biela, T., Gutowska, A., Sztajnowski, S., & Krucińska, I. (2018). Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions. Polymers, 10(3), 251. doi:10.3390/polym10030251Fujimaki, T. (1998). Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polymer Degradation and Stability, 59(1-3), 209-214. doi:10.1016/s0141-3910(97)00220-6Číhal, P., Vopička, O., Pilnáček, K., Poustka, J., Friess, K., Hajšlová, J., … Dole, P. (2015). Aroma scalping characteristics of polybutylene succinate based films. Polymer Testing, 46, 108-115. doi:10.1016/j.polymertesting.2015.07.006Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B., & Munari, A. (2016). Poly(butylene succinate)-based polyesters for biomedical applications: A review. European Polymer Journal, 75, 431-460. doi:10.1016/j.eurpolymj.2016.01.016Cheng, H.-H., Xiong, J., Xie, Z.-N., Zhu, Y.-T., Liu, Y.-M., Wu, Z.-Y., … Guo, Z.-X. (2017). Thrombin-Loaded Poly(butylene succinate)-Based Electrospun Membranes for Rapid Hemostatic Application. Macromolecular Materials and Engineering, 303(2), 1700395. doi:10.1002/mame.201700395Costa-Pinto, A. R., Martins, A. M., Castelhano-Carlos, M. J., Correlo, V. M., Sol, P. C., Longatto-Filho, A., … Neves, N. M. (2014). In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 29(2), 137-151. doi:10.1177/0883911514521919Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., … Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579Peponi, L., Sessini, V., Arrieta, M. P., Navarro-Baena, I., Sonseca, A., Dominici, F., … Kenny, J. M. (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 151, 36-51. doi:10.1016/j.polymdegradstab.2018.02.019Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. doi:10.1016/j.compositesa.2015.06.007Lau, K., Hung, P., Zhu, M.-H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222-233. doi:10.1016/j.compositesb.2017.10.038Chun, K. S., Yeng, C. M., & Hussiensyah, S. (2016). Green coupling agent for agro-waste based thermoplastic composites. Polymer Composites, 39(7), 2441-2450. doi:10.1002/pc.24228Panthapulakkal, S., & Sain, M. (2007). Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Composites Part A: Applied Science and Manufacturing, 38(6), 1445-1454. doi:10.1016/j.compositesa.2007.01.015Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62-73. doi:10.1016/j.wasman.2016.04.037Feng, Y.-H., Li, Y.-J., Xu, B.-P., Zhang, D.-W., Qu, J.-P., & He, H.-Z. (2013). Effect of fiber morphology on rheological properties of plant fiber reinforced poly(butylene succinate) composites. Composites Part B: Engineering, 44(1), 193-199. doi:10.1016/j.compositesb.2012.05.051Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Athanassiadou, E., Reinders, M., & Bikiaris, D. N. (2014). Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polymer Composites, 37(2), 407-421. doi:10.1002/pc.23194Lee, J. M., Mohd Ishak, Z. A., Mat Taib, R., Law, T. T., & Ahmad Thirmizir, M. Z. (2012). Mechanical, Thermal and Water Absorption Properties of Kenaf-Fiber-Based Polypropylene and Poly(Butylene Succinate) Composites. Journal of Polymers and the Environment, 21(1), 293-302. doi:10.1007/s10924-012-0516-4Tserki, V., Matzinos, P., & Panayiotou, C. (2006). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Composites Part A: Applied Science and Manufacturing, 37(9), 1231-1238. doi:10.1016/j.compositesa.2005.09.004Yen, F.-S., Liao, H.-T., & Wu, C.-S. (2012). Characterization and biodegradability of agricultural residue-filled polyester ecocomposites. Polymer Bulletin, 70(5), 1613-1629. doi:10.1007/s00289-012-0862-3El Mechtali, F. Z., Essabir, H., Nekhlaoui, S., Bensalah, M. O., Jawaid, M., Bouhfid, R., & Qaiss, A. (2015). Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 12(3), 483-494. doi:10.1016/s1672-6529(14)60139-6Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230. doi:10.1016/j.matdes.2013.04.031García, A. M., García, A. I., Cabezas, M. Á. L., & Reche, A. S. (2015). Study of the Influence of the Almond Variety in the Properties of Injected Parts with Biodegradable Almond Shell Based Masterbatches. Waste and Biomass Valorization, 6(3), 363-370. doi:10.1007/s12649-015-9351-xQuiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Valdés García, A., Ramos Santonja, M., Sanahuja, A. B., & Selva, M. del C. G. (2014). Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 108, 269-279. doi:10.1016/j.polymdegradstab.2014.03.011Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961. doi:10.1016/j.compositesb.2008.01.002Kim, H.-S., Lee, B.-H., Lee, S., Kim, H.-J., & Dorgan, J. R. (2010). Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 104(1), 331-338. doi:10.1007/s10973-010-1098-9Li, Y., Zhang, J., Cheng, P., Shi, J., Yao, L., & Qiu, Y. (2014). Helium plasma treatment voltage effect on adhesion of ramie fibers to polybutylene succinate. Industrial Crops and Products, 61, 16-22. doi:10.1016/j.indcrop.2014.06.039Sepe, R., Bollino, F., Boccarusso, L., & Caputo, F. (2018). Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites Part B: Engineering, 133, 210-217. doi:10.1016/j.compositesb.2017.09.030Shaniba, V., Sreejith, M. P., Aparna, K. B., Jinitha, T. V., & Purushothaman, E. (2017). Mechanical and thermal behavior of styrene butadiene rubber composites reinforced with silane-treated peanut shell powder. Polymer Bulletin, 74(10), 3977-3994. doi:10.1007/s00289-017-1931-4Phua, Y. J., Chow, W. S., & Mohd Ishak, Z. A. (2013). Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polymer Letters, 7(4), 340-354. doi:10.3144/expresspolymlett.2013.31Zhu, N., Ye, M., Shi, D., & Chen, M. (2017). Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromolecular Research, 25(2), 165-171. doi:10.1007/s13233-017-5025-9Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Orue, A., Eceiza, A., & Arbelaiz, A. (2018). Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Industrial Crops and Products, 112, 170-180. doi:10.1016/j.indcrop.2017.11.011Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164Sarwono, A., Man, Z., & Bustam, M. A. (2012). Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. Journal of Polymers and the Environment, 20(2), 540-549. doi:10.1007/s10924-012-0418-5Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Ren, M., Song, J., Song, C., Zhang, H., Sun, X., Chen, Q., … Mo, Z. (2005). Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241. doi:10.1002/polb.20539Ye, H.-M., Chen, X.-T., Liu, P., Wu, S.-Y., Jiang, Z., Xiong, B., & Xu, J. (2017). Preparation of Poly(butylene succinate) Crystals with Exceptionally High Melting Point and Crystallinity from Its Inclusion Complex. Macromolecules, 50(14), 5425-5433. doi:10.1021/acs.macromol.7b00656Ostafi, M.-F., Dinulică, F., & Nicolescu, V.-N. (2016). Physical properties and structural features of common walnut (Juglans regia L.) wood: A case-study / Physikalische Eigenschaften und strukturelle Charakteristika des Holzes der Walnuß (Juglans regia L.): Eine Fallstudie. Die Bodenkultur: Journal of Land Management, Food and Environment, 67(2), 105-120. doi:10.1515/boku-2016-0010Luís, R. C. G., Nisgoski, S., & Klitzke, R. J. (2018). Effect of Steaming on the Colorimetric Properties of Eucalyptus saligna Wood. Floresta e Ambiente, 25(1). doi:10.1590/2179-8087.101414Lopes, J. de O., Garcia, R. A., Latorraca, J. V. de F., & Nascimento, A. M. do. (2014). Alteração da cor da madeira de teca por tratamento térmico. Floresta e Ambiente, 21(4), 521-534. doi:10.1590/2179-8087.013612Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013Xu, X., Zhang, M., Qiang, Q., Song, J., & He, W. (2015). Study on the performance of the acetylated bamboo fiber/PBS composites by molecular dynamics simulation. Journal of Composite Materials, 50(7), 995-1003. doi:10.1177/0021998315615690Wu, C.-S., Hsu, Y.-C., Liao, H.-T., Yen, F.-S., Wang, C.-Y., & Hsu, C.-T. (2014). Characterization and biocompatibility of chestnut shell fiber-based composites with polyester. Journal of Applied Polymer Science, 131(17), n/a-n/a. doi:10.1002/app.40730Saeed, U., Nawaz, M., & Al-Turaif, H. (2018). Wood flour reinforced biodegradable PBS/PLA composites. Journal of Composite Materials, 52(19), 2641-2650. doi:10.1177/0021998317752227Luo, X., Li, J., Feng, J., Yang, T., & Lin, X. (2014). Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials & Design, 57, 195-200. doi:10.1016/j.matdes.2013.12.056Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Calabia, B., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., & Funabashi, M. (2013). Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers, 5(1), 128-141. doi:10.3390/polym5010128Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160-169. doi:10.1016/j.indcrop.2012.12.013Faulstich de Paiva, J. M., & Frollini, E. (2006). Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 291(4), 405-417. doi:10.1002/mame.200500334Wang, G., Guo, B., Xu, J., & Li, R. (2011). Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. Journal of Applied Polymer Science, 121(1), 59-67. doi:10.1002/app.33222Dumazert, L., Rasselet, D., Pang, B., Gallard, B., Kennouche, S., & Lopez-Cuesta, J.-M. (2017). Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polymers for Advanced Technologies, 29(1), 69-83. doi:10.1002/pat.4090Chen, G.-X., & Yoon, J.-S. (2005). Thermal stability of poly(l-lactide)/poly(butylene succinate)/clay nanocomposites. Polymer Degradation and Stability, 88(2), 206-212. doi:10.1016/j.polymdegradstab.2004.06.005Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042Fuqua, M. A., Chevali, V. S., & Ulven, C. A. (2012). Lignocellulosic byproducts as filler in polypropylene: Comprehensive study on the effects of compatibilization and loading. Journal of Applied Polymer Science, 127(2), 862-868. doi:10.1002/app.3782

    Interpretation of the results obtained by Finite Element Analysis (FEA) in SolidWorks

    Full text link
    El artículo se centra en la interpretación de los resultados que ofrece un software de análisis mediante el método de los elementos finitos (FEA) bajo la plataforma SolidWorks. Se pretende que el alumno realice un análisis crítico de los resultados.Balart Gimeno, RA.; Quiles Carrillo, LJ.; Montañés Muñoz, N. (2018). Interpretation of the results obtained by Finite Element Analysis (FEA) in SolidWorks. http://hdl.handle.net/10251/104404DE

    Creating a CAD model of a single beam for engineering analysis with SolidWorks

    Full text link
    Artículo centrado en el desarrollo de un modelo CAD de un problema típico en el ámbito de la ingeniería, análisis de vigas.Balart Gimeno, RA.; Quiles Carrillo, LJ.; Montañés Muñoz, N. (2018). Creating a CAD model of a single beam for engineering analysis with SolidWorks. http://hdl.handle.net/10251/104387DE

    Evaluating the environmental impact of a series of materials on an engineering part with the Sustainability tool of SolidWorks

    Full text link
    This article aims to study of the environmental effects of selecting different materials on an engineering part by using the Sustainability tool in SolidWorks. With this tool it is possible to assess the ecoefficiency of a particular material (or set of materials) in engineering applications.Montañés Muñoz, N.; Balart Gimeno, RA.; Quiles Carrillo, LJ. (2018). Evaluating the environmental impact of a series of materials on an engineering part with the Sustainability tool of SolidWorks. http://hdl.handle.net/10251/104572DE

    Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin

    Full text link
    [EN] Highly environmentally-friendly fibreboards were manufactured by hot-press moulding using Posidonia ocaeanica wastes and a partially biobased epoxy resin as binder. Fibreboards with a constant fibre content of 70 wt % were successfully manufactured by thermo-compression. The effects of a conventional alkali treatment were compared to the synergistic effects that additional silanization with two silanes (amino and glycidyl) can exert on the mechanical and thermo-mechanical properties of fibreboards. The results revealed a remarkable improvement of the mechanical properties with the combination of the alkali treatment followed by the silanization. Scanning electron microscopy also revealed increased resin-fibre interactions due to the synergistic effect of both amino- and glycidyl-silanes. These fibreboards represent a formaldehyde-free solution and can positively contribute to sustainable development as the lignocellulosic component is a waste and the binder resin is partially biobased.This work was supported by the Ministry of Economy and Competitiveness-MINECO [MAT2014-59242-C2-1-R]. D. Garcia-Garcia wants to thank the Spanish Ministry of Education, Culture and Sports for the financial support through a FPU grant number FPU13/06011. L. Quiles-Carrillo acknowledges Generalitat Valenciana-GV for financial support through a FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812).Garcia-Garcia, D.; Quiles-Carrillo, L.; Montanes, N.; Fombuena, V.; Balart, R. (2018). Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin. Materials. 11(1). https://doi.org/10.3390/ma11010035S3511

    Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents

    Full text link
    [EN] Fully bio-based polyamide 1010 (PA1010) was melt-compounded with 15 wt% of slate fibers (SFs), which were obtained from wastes of the tile industry, and the resultant composites were shaped into parts by injection molding. The as-received fibers were first thermally treated and afterwards subjected to surface modification with glycidyl- and amino-silane coupling agents to improve the interfacial adhesion of the composites. The incorporation of both the glycidyl-silane slate fiber (G-SF) and amino-silane slate fiber (A-SF) remarkably improved the mechanical strength of PA1010, inducing a 3-fold increase in tensile modulus. The composite parts prepared with the silanized SFs also presented higher thermal stability and improved thermomechanical resistance. Water uptake was reduced below 1%, encouragingly suggesting that the mechanical performance of the PA1010/SF composites would be scarcely affected by atmospheric humidity. G-SF was the most effective in strengthening PA1010. This improvement was ascribed to the higher reactivity of the cyclic anhydride in the coupled silane with the terminal hydroxyl groups of the biopolymer.The Spanish Ministry of Science, Innovation and Universities MICIU) is acknowledged for funding through the MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R projects. Quiles-Carrillo holds a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD) whereas Torres-Giner is a recipient of a Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) from MICIU.Quiles-Carrillo, L.; Boronat, T.; Montanes, N.; Balart, R.; Torres-Giner, S. (2019). Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing. 77. https://doi.org/10.1016/j.polymertesting.2019.04.022S7

    Ecoembes y el eco-diseño de Envases

    Full text link
    A lo largo de este objeto de aprendizaje se trata de explicar qué es Ecoembes, cuál es su labor, qué son las Tarifas del Punto Verde, que es un eco-diseño, como podemos realizarlo con la ayuda de Ecoembes y cuáles son las ventajas inherentes de efectuar estos eco-diseños. Tras su lectura se puede apreciar como con los eco-diseños todos salimos ganando.Montañés Muñoz, N.; Quiles Carrillo, LJ. (2018). Ecoembes y el eco-diseño de Envases. http://hdl.handle.net/10251/104408DE
    corecore